Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models
نویسندگان
چکیده
Osteopenia, a preclinical state of osteoporosis, restricts the application of adult orthodontic implant anchorage and tooth implantation. Strontium (Sr) is able to promote bone formation and inhibit bone absorption. The aim of the present study was to evaluate a new method for improving the success rate of dental implantation. In this study, an electrochemical deposition (ECD) method was used to prepare a Sr coating on a titanium implant. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and the surface morphology of the coating was studied using scanning electron microscopy. A total of 24 Sprague-Dawley rats received bilateral ovariectomy (OVX) and an additional 12 rats underwent a sham surgery. All rats were then implanted in the bilateral tibiae with titanium mini-implants with or without a Sr coating. The results of histological examination and a fluorescence double labeling assay showed strong new bone formation with a wider zone between the double labels, a higher rate of bone mineralization and better osseointegration in the OVX rats that received Sr-coated implants compared with the OVX rats that received uncoated implants. The study indicates that Sr coatings are easily applied by an ECD method, and that Sr coatings have a promoting effect on implant osseointegration in animals with osteopenia.
منابع مشابه
Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition
Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologie...
متن کاملImproved titanium and steel implants: Studies on bisphosphonate, strontium and surface treatments
....................................................................................................................................7 POPULÄRVETENSKAPLIG SAMMANFATTNING...................................................................9 LIST OF PAPERS........................................................................................................................ 11 MY CONTRIBUTIONS TO IN...
متن کاملOsteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces.
OBJECTIVE To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. METHODS Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr...
متن کاملIn vivo osseointegration of Ti implants with a strontium-containing nanotubular coating
Novel biomedical titanium (Ti) implants with high osteogenic ability for fast and good osseointegration under normal as well as osteoporotic conditions are urgently needed. Expanding on our previous in vitro results, we hypothesized that nanotubular, strontium-loaded (NT-Sr) structures on Ti implants would have favorable osteogenic effects and evaluated the in vivo osseointegration of these imp...
متن کاملطراحی، تهیه و ارزیابی پوشش نوین هیدروکسی آپاتیت-تیتانیوم برای اندوایمپلنت دندانی
Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015